69一区二三区好的精华液,中文字幕无码av波多野吉衣,亚洲精品久久久久久无码色欲四季,日本不卡高字幕在线2019

劉澤顯

貴州大學 數學與統計學院

最優化方法與應用

簡介  ABOUT

動態   NEWS

學術   ACADEMIC

其他    MISC

個人簡介

劉澤顯,1984年出生,廣西昭平人, 2018年博士畢業于西安電子科技大學應用數學(導師:劉紅衛教授),2020年從中國科學院數學與系統科學研究院博士后出站(合作導師:戴彧虹研究員),現為貴州大學數學與統計學院副教授,碩士生導師。主要從事最優化方法與應用的研究,在近似最優梯度法、子空間極小化共軛梯度法和有限內存共軛梯度法方面取得了富有特色的研究成果 。目前在讀碩士研究生7人,歡迎對最優化方法與應用感興趣的本科生報考,聯系方式:liuzexian2008@163.com

學術、社會兼職

1. 中國運籌學會算法軟件與應用分會理事

2. 美國《數學評論》評論員

3. 國際SCI期刊 J. Global Optim.,  Optim. Methods Softw.,  Numer.  Algorithms,  Appl. Numer. Math.,   J. Comput. Appl. Math.,  Numer. Func. Anal. Optim.,Optim. Letters等期刊審稿人

4. 國內核心期刊 《中國科學.數學》、《計算數學》、《運籌學報》等期刊審稿人

獎勵

1. 陜西省第四屆研究生創新成果一等獎(2018) 

2. 西安電子科技大學數學與統計學院2016-2017 年學術創新一等獎  

3. 2014 年廣西高等教育學會數學專業教學專業委員會學術論文一等獎  

4. 2021年西安電子科技大學優秀博士論文

5. 2021年被評為貴州大學數學與統計學院“優秀共產黨員”

6.  2022年獲貴州大學數學與統計學院考核優秀

項目

1. 新型一階算法及其收斂率和應用研究,國家自然科學基金,2023.1-2026.12,主持,在研

2. 混合整數規劃的人工智能方法(11991021), 國家自然科學基金重大項目,  2020.1-2024.12, 主要參與,  在研

3. 大規模優化的近似最優梯度法和有限內存共軛梯度法研究, 國家自然科學基金青年項目,2020.1-2021.12,主持,結題

4. 非凸優化問題的梯度型算法研究(黔科合基礎-ZK[2022]一般 084),貴州自然科學基金,  2022.3-2024.3,主持,在研

5. 無約束優化問題的若干算法研究,中國博士后科學基金面上項目,2019.11-2021.1,主持,結題

6. 基于BB 算法思想的梯度法與共軛梯度法及其應用研究,廣西自然科學基金,2018.11-2021.12,主持,結題

軟件

1.子空間極小化共軛梯度法軟件 SMCG_BB (Hongwei Liu, Zexian Liu.  An efficient Barzilai-Borwein conjugate gradient method for unconstrained optimization): CodeNumerical results.  

2.梯度法軟件 GM_AOS(cone) (Zexian Liu, Hongwei Liu.  Gradient method with approximately optimal stepsize based on conic model ):CodeNumerical results.  

論文

27. Song Taiyong,  Liu Zexian*. An efficient inertial subspace minimization CG algorithm with convergence rate analysis for constrained nonlinear monotone equations. accepted by Journal of Computational and Applied Mathematics, 2024  (SCI).

26. Liu Hongwei, Wang, Ting,  Liu Zexian.  A nonmonotone accelerated proximal gradient method with variable stepsize strategy for nonsmooth and nonconvex minimization problems.  Journal of Global Optimization  (2024). https://doi.org/10.1007/s10898-024-01366-4 (SCI)

25. Ni Yan,  Liu Zexian*.  A new Dai-Liao conjugate gradient method based on approximately optimal stepsize for unconstrained optimization, accepted by Numerical Functional Analysis and Optimization, 2024  (SCI).

24. Liu Zexian, Ni Yan, Liu Hongwei, Sun Wumei. A new subspace minimization conjugate gradient method for unconstrained minimization.  Journal of Optimization Theory and Applications, https://link.springer.com/article/10.1007/s10957-023-02325-x, 2023 (SCI)

23. Liu Hongwei, Sun Wumei, Liu Zexian. A Regularized Limited Memory Subspace Minimization Conjugate Gradient Method for Unconstrained Optimization.  Numerical Algorithms, https://doi.org/10.1007/s11075-023-01559-0, 2023 (SCI), 

22.  Liu Zexian,  Liu Hongwei, Wang  Ting.  New gradient methods with adaptive stepsizes by approximate models, Optimization, https://doi.org/10.1080/02331934.2023.2234925 , (SCI), 2023.

21.  Liu Hongwei, Wang Ting, Liu Zexian.  Convergence rate of inertial forward–backward algorithms based on the local error bound condition.   IMA Journal of Numerical Analysis.  https://doi.org/10.1093/imanum/drad031,  2023(SCI)

20.  Liu Hongwei, Wang Ting, Liu Zexian. Some modified fast iterative shrinkage thresholding algorithms with a new adaptive non-monotone stepsize strategy for nonsmooth and convex minimization problems. Computational Optimization and Applications, (2022). https://doi.org/10.1007/s10589-022-00396-6 (SCI)

19. Liu Zexian, Chu Wangli, Liu Hongwei. An efficient gradient method  with approximately optimal stepsizes based on regularization models for unconstrained optimization. RAIRO Operations Research, 56, 2403–2424(2022). (SCI)

18. Sun Wumei, Liu Hongwei, Liu Zexian. Several accelerated subspace minimization conjugate gradient methods based on regularization model and convergence rate analysis for nonconvex problems. Numerical Algorithms, (2022). https://doi.org/10.1007/s11075-022-01319-6  (SCI  )

17. Sun Wumei, Liu Hongwei, Liu Zexian. A class of accelerated subspace minimization conjugate gradient methods. Journal of Optimization Theory and Applications, 190, 811–840 (2021). (SCI )

16. Zhao Ting, Liu Hongwei, Liu Zexian. New subspace minimization conjugate gradient methods based on regularization model for unconstrained optimization. Numerical Algorithms. 87(4), 1501–1534, 2021.(SCI  )

15. Liu Zexian, Liu Hongwei, Dai Yu-Hong*. An improved Dai-Kou conjugate gradient algorithm forunconstrained optimization. Computational  Optimization and Applications202075(1):145–167 (SCI  )

14. Liu Zexian, Liu Hongwei*. An efficient gradient method with approximately optimal stepsize based ontensor model for unconstrained optimization. Journal of Optimization Theory and Applications2019, 181(2): 608-633. (SCI  )

13. Liu Hongwei, Liu Zexian*. An efficient Barzila-Borwein conjugate gradient method for unconstrained Optimization. Journal of Optimization Theory and Applications, 2019, 180(3):879-906 (SCI  )

12. Liu Zexian, Liu Hongwei. Several efficient gradient methods with approximate optimal stepsizes forlarge scale unconstrained optimization.  Journal of Computational and Applied Mathematics, 2018, 328:400-413. (SCI  )

11. Liu Zexian, Liu Hongwei. An efficient gradient method with approximate optimal stepsize for large-scale unconstrained optimization.  Numerical Algorithms, 2018, 78(1):21-39. (SCI 2 區)

10. Li Ming, Liu Hongwei, Liu Zexian*. A new subspace minimization conjugate gradient method with nonmonotone line search for unconstrained  optimization. Numerical Algorithms, 2018, 79(1):195- 219(SCI  )

9. Liu Zexian, Liu Hongwei, Dong Xiaoliang. An efficient gradient method with approximate optimal stepsize for the strictly convex quadratic minimization problem. Optimization, 2018, 67(3): 427-440.(SCI  )

8. Liu Zexian*, Liu Hongwei, Wang Xiping. Accelerated augmented Lagrangian method for total variation minimization. Computational and Applied Mathematics, 2019, 38(2). https://doi.org/10.1007/ s40314-019-0787-7. (SCI )

7. Liu Hongwei, Liu Zexian*, Dong Xiaoliang. A new adaptive Barzilai and Borwein method for unconstrained optimization. Optimization Letters, 2018, 12(4):845-873. (SCI )

6. Li Yufei, Liu Zexian*, Liu Hongwei. A subspace minimization conjugate gradient method based on conic model for unconstrained optimization. Computational and Applied Mathematics, 2019, 38(1),https://link.springer.com/article/10.1007/s40314-019-0779-7 . ( SCI )

5. Wang Ting, Liu Zexian*, Liu Hongwei. A new subspace minimization conjugate gradient method based on tensor model for unconstrained  optimization. International Journal of Computer Mathematics, 2019, 96(10): 1924-1942. (SCI )

4. Dong Xiaoliang, Liu Zexian, Liu Hongwei, Li Xiangli. An efficient adaptive three-term extension of the Hestenes–Stiefel conjugate gradient method.  Optimization Methods and Software, 2018, 34(2):1-14 

3. Zhang Keke, Liu Hongwei, Liu Zexian*. A new adaptive subspace minimization three-term conjugate gradient algorithm for unconstrained optimization. Journal of Computational Mathematics. 2021, 39(2), 159-177. (SCI )

2. 劉澤顯. 一種修正的線搜索Filter-SQP 算法. 系統科學與數學, 2014, 34(1):53-63.  (核心)

1. 劉澤顯,劉紅衛,何川美. 基于新的Hessian 近似矩陣的稀疏重構算法.數學的實踐與認識, 2019,(13):167-178.  (核心)

 

教學

承擔數值分析、運籌學、離散數學、概率論與數理統計、信息論基礎、數學實驗和最優化方法等課程, 主持完成廣西區教改項目

1. 地方本科院校數學與應用數學專業實驗教學的研究與實踐(2014JGB234),2014廣西高等教育教學改革工程項目,2014.6-2016.4,主持

 

CONTACT Me
Scholat.com/liuzexian
我的主頁
獲取微信名片
  •  個人簡介

  •  學術、社會兼職

  •  獎勵

  •  項目

  •  軟件

  •  論文

  •  教學

  • Contact Me

SCHOLAT.com 學者網
ABOUT US | SCHOLAT
主站蜘蛛池模板: 子洲县| 寻甸| 施秉县| 津市市| 阜新市| 繁峙县| 墨脱县| 台州市| 凤山市| 二连浩特市| 马关县| 吴桥县| 禄丰县| 乌鲁木齐县| 滁州市| 南漳县| 绿春县| 西和县| 南和县| 新昌县| 莱西市| 闵行区| 浏阳市| 南雄市| 阳东县| 余干县| 乐陵市| 桐柏县| 财经| 桓仁| 共和县| 界首市| 连江县| 廉江市| 滁州市| 榆树市| 公安县| 彭山县| 镇坪县| 改则县| 喀什市|