
教授、博士生導師、副院長
時間序列分析 , 高維數(shù)據(jù)分析 , 機器學習
-
1個人簡介
-
2教育經(jīng)歷
-
3工作背景
-
4訪問背景
-
5授課課程
-
6已發(fā)表科研論文
-
7專著
-
8教材
-
9主持課題
-
10Contact Me
夏強,教授,博士生導師,現(xiàn)為華南農(nóng)業(yè)大學數(shù)學與信息學院、軟件學院副院長。主要從事時間序列分析和高維數(shù)據(jù)分析的研究,已經(jīng)在JBES、mBio、Statistica Sinica、JTSA、CSDA、中國科學《數(shù)學》等國內(nèi)外學術期刊上發(fā)表40余篇,科學出版社出版專著1部斯普林格出版社出版專著的一個章節(jié)。近年來主持國家自然科學基金重大研究計劃培育項目,國家自然科學基金面上項目,國家社科基金青年項目各1項。目前擔任美國數(shù)學評論評論員;廣東省統(tǒng)計學會常務理事;廣東省現(xiàn)場統(tǒng)計學會副理事長。電子郵箱:xiaqiang@scau.edu.cn
2012/9–2015/6 中國人民大學統(tǒng)計學院, 統(tǒng)計學, 博士
2003/9–2006/6 華東師范大學統(tǒng)計系, 概率統(tǒng)計, 碩士
1993/9–1997/6 江蘇師范大學(原徐州師范大學)數(shù)學系, 數(shù)學教育, 學士
2018/12-至今 華南農(nóng)業(yè)大學,數(shù)學與信息(軟件)學院,教授
2015/1-2018/11 華南農(nóng)業(yè)大學,數(shù)學與信息(軟件)學院,副教授
2011/12-2014/12 華南農(nóng)業(yè)大學,理學院,副教授
2006/7-2011/11 華南農(nóng)業(yè)大學,理學院,講師
1997/8-2003/8 江蘇省徐州第七高級中學,中學教師
2018/9-2019/6 東北師范大學,統(tǒng)計與數(shù)學學院,訪問學者
2018/7-2018/8 香港大學,統(tǒng)計與精算系,Research Associate
2016/12-2017/12 美國德州農(nóng)工大學,統(tǒng)計系,國家公派訪問學者
2015/7-2015/8 香港理工大學,應用數(shù)學系,Research Associate
2013/11-2014/2 香港浸會大學,數(shù)學系,訪問學人(王寬誠教育基金會和香港浸會大學合辦的中國內(nèi)地訪問學人計劃)
2013/7-2013/8 香港理工大學,應用數(shù)學系,Research Associate
高等數(shù)理統(tǒng)計;時間序列分析;回歸分析;多元統(tǒng)計分析;非參數(shù)統(tǒng)計;數(shù)理統(tǒng)計;統(tǒng)計計算
#學生,* 通訊作者
[22] Qiang Xia, Xianyang Zhang*, Adaptive testing for alphas in high dimensional factor pricing models, Journal of Business & Economic Statistics Statistics. 2023 (SSCI&SCI, 已接收)
[21] Jun Yang#, Renjie Wu#, Qiang Xia, Jingjing Yu, Lingxian Yi, Ying Huang, Meixin Deng, Wanyun He, Yuman Bai, luchao Lv, Vincent Burrus, Chengzhen Wang, and Jian-Hua Liu*, The evolution of infectious transmission promotes the persistence of mcr-1 plasmids, mBio. 2023 (SCI, 已接收, 共同一作)
[20] Rubing Liang, Binbin Qin, Qiang Xia*, Bayesian Inference for Mixed Gaussian GARCH-type Model by Hamiltonian Monte Carlo Algorithm, Computational Economics. 2022 (SSCI&SCI, 已接收, 通訊作者)
[19] Xiaobing Zheng#, Qiang Xia*, Rubing Liang, Bayesian Inference for Order Determination of Double Threshold Variables Autoregressive Models, Studies in Nonlinear Dynamics & Econometrics. 2022 (SSCI, 已接收, 通訊作者)
[18] Jinshan Liu, Jiazhu Pan, Qiang Xia*, Li Xiao, On determination of the number of factors in an approximate factor model, Studies in Nonlinear Dynamics & Econometrics. 2022 (SSCI, 已接收,通訊作者)
[17] Qiang Xia, Heung Wong, Shirun Shen, Kejun He*, Factor analysis for high dimensional time series: consistent estimation and efficient computation, Statistics Analysis and Data Mining. 2022, 15(2): 247 -263 (SCI)
[16] Xiaobing Zheng#, Kun Liang, Qiang Xia*, Dabing Zhang, Best Subset Selection for Double-Threshold-Variable Autoregressive Moving-Average Models: The Bayesian Approach. Computational Economics, 2022, 59:1175-1201 (SSCI&SCI,通訊作者)
[15] Jinshan Liu, Jiazhu Pan, Qiang Xia*, Ying Xiao, Subset Selection of Double-Threshold Moving Average Models Through the Application of the Bayesian Method, Statistics and Its Interface. 2022, 15: 51-61(SCI,通訊作者)
[14] Jinshan Liu, Qiang Xia*. Some finite sample results for a system of seemingly unrelated regression equations, Communications in Statistics - Theory and Methods, 2022, 11(51):3629-3644 (SCI,通訊作者)
[13] Qiang Xia*, Zhiqiang Zhang, Wai Keung Li. A Portmanteau Test for Smooth Transition Autoregressive Models, Journal of Time Series Analysis, 2020, 41: 722–730 . (SCI)
[12] Qiang Xia, Rubing Liang*, Jianhong Wu, Heung Wong. Determining the number of factors for high-dimensional time series, Statistics and Its Interface, 2018, 11: 307-316. (SCI)
[11] Shuxia Ni#, Qiang Xia*, Jinshan Liu. Bayesian Subset Selection for Two-Threshold Variable Autoregressive Models, Studies in Nonlinear Dynamics & Econometrics, 2018, 22, 4:1-16. (SSCI,通訊作者)
[10] Qiang Xia*, Kejun He, Cunzhen Niu. A Model adaptive test for parametric single index time series model, Journal of Time Series Analysis, 2017, 38(6):981-999. (SCI)
[9] Qiang Xia, Rubing Liang*, Jianhong Wu, Transformed Contribution Ratio Test for the Number of Factors in Static Approximate Factor Models, Computational Statistics and Data Analysis, 2017, 112:235-241. (SCI)
[8] Rubing Liang, Qiang Xia*, Jiazhu Pan, Jinshan Liu, Testing a Linear ARMA Model against Threshold-ARMA Models: a Bayesian Approach, Communications in Statistics - Simulation and Computation, 2017, 46: 1302-1317. (SCI,通訊作者)
[7] Qiang Xia, Heung Wong*, Jinshan Liu,Rubing Liang, Bayesian Analysis of Power-Transformed and Threshold GARCH Models: A Griddy-Gibbs Sampler Approach, Computational Economics, 2017, 50(3): 353–372. (SSCI&SCI)
[6] Qiang Xia, Wangli Xu, Lixing Zhu*, Consistently determining the number of factors in multivariate volatility modelling, Statistica Sinica, 2015, 25: 1025-1044. (SCI)
[5] Rubing Liang, Cuizhen Niu, Qiang Xia*, Zhiqiang Zhang, Nonlinearity Testing and Modeling for Threshold Moving Average Models, Journal of Applied Statistics, 2015, 42: 2614-2630. (SCI,通訊作者)
[4] Qiang Xia, Rubing Liang, Jinshan Liu*, A Bayesian Analysis of Autoregressive Models with Exogenous Variables and Power-Transformed and Threshold GARCH Errors, Communications in Statistics - Theory and Methods, 2015, 44: 1967-1980. (SCI)
[3] Qiang Xia, Jinshan Liu*, Jiazhu Pan, Rubing Liang, Bayesian Analysis of Two-Regime Threshold Autoregressive Moving Average Model with Exogenous Inputs, Communications in Statistics - Theory and Methods, 2012, 41: 1089-1104. (SCI)
[2] Qiang Xia, Jiazhu Pan, Zhiqiang Zhang, Jinshan Liu*, A Bayesian Nonlinearity Test for Threshold Moving Average Models, Journal of Time Series Analysis, 2010, 31: 329-336. (SCI)
[1] 夏強,梁茹冰,李高榮*,參數(shù)單指標分位數(shù)自回歸模型的診斷檢驗,中國科學--數(shù)學,2019 , 49 (6): 879 -898.
[2] 劉金山,夏強,基于MCMC算法的貝葉斯統(tǒng)計方法,科學出版社,420000,2016.
[1] Qiang Xia, Heung Wong, Identification of Threshold Autoregressive Moving Average Models, Springer-Verlag New York, 8500, 2016.
[1] 夏強,劉金山,概率論與數(shù)理統(tǒng)計,人民郵電出版社,380000,2018.
7. 國家自然科學基金面上項目,近似因子模型的高維稀疏截距向量檢驗問題的若干研究(12171161),2022.1-2025.12,在研;
6. 國家自然科學基金重大研究計劃培育項目,高維時間序列因子自回歸模型的統(tǒng)計推斷及應用研究(91746102),2018.1-2020.12,已結題;
5. 教育部人文社科基金規(guī)劃項目,高維時間序列靜態(tài)的近似因子模型的因子個數(shù)估計理論及 應用研究(17YJA910002),2017.7-2020.7,已結題;
4. 廣東省自然科學基金面上項目,高維數(shù)據(jù)中因子模型的統(tǒng)計推斷及應用 (2016A030313414),2016/6-2019/6,已結題;
3. 全國統(tǒng)計科學研究重點項目,高維時間序列因子模型的統(tǒng)計推斷方法的改進及應用研究(2015LZ48),2015/12-2017/11,已結題;
2. 國家社會科學基金青年項目,兩類門限型計量經(jīng)濟學模型的貝葉斯檢驗及應用研究(2CTJ0191),2012/09-2015/08,已結題;
1. 教育部人文社科基金青年項目,PTGARCH模型的貝葉斯檢驗及其在經(jīng)濟金融波動問題中的應用(11YJCZH195),2011.8-2014.8,已結題;