69一区二三区好的精华液,中文字幕无码av波多野吉衣,亚洲精品久久久久久无码色欲四季,日本不卡高字幕在线2019

TCM-FTP: Fine-Tuning Large Language Models for Herbal Prescription Prediction

      近日,團(tuán)隊(duì)老師張連文、許玉龍參與,由香港科技大學(xué)、北京交通大學(xué)、中國(guó)中醫(yī)科學(xué)院、河南中醫(yī)藥大學(xué)合作的科研成果: 《TCM-FTP:中醫(yī)藥診斷大模型》,被IEEE International Conference on Bioinformatics and Biomedicine (BIBM2024)  會(huì)議錄用,IEEE BIBM會(huì)議是生物信息領(lǐng)域著名的會(huì)議,屬交叉/綜合/新興類別 ,在CCF分級(jí)中為B類會(huì)議,近三年的錄用率為19% 左右,在國(guó)際上有較高的影響力。

 Abstract:Traditional Chinese medicine (TCM) relies on specific combinations of herbs in prescriptions to treat symptoms and signs, a practice that spans thousands of years. Predicting TCM prescriptions presents a fascinating technical challenge with practical implications. However, this task faces limitations due to the scarcity of high-quality clinical datasets and the intricate relationship between symptoms and herbs. To address these issues, we introduce DigestDS, a new dataset containing practical medical records from experienced experts in digestive system diseases. We also propose a method, TCM-FTP (TCM Fine-Tuning Pre-trained), to leverage pre-trained large language models (LLMs) through supervised fine-tuning on DigestDS.
Additionally, we enhance computational efficiency using a lowrank adaptation technique. TCM-FTP also incorporates data augmentation by permuting herbs within prescriptions, capitalizing on their order-agnostic properties. Impressively, TCMFTP achieves an F1-score of 0.8031, surpassing previous methods significantly. Furthermore, it demonstrates remarkable accuracy in dosage prediction, achieving a normalized mean square error of 0.0604. In contrast, LLMs without fine-tuning perform poorly. Although LLMs have shown capabilities on a wide range of tasks, this work illustrates the importance of fine-tuning for TCM prescription prediction, and we have proposed an effective way to do that.

 
附件

登錄用戶可以查看和發(fā)表評(píng)論, 請(qǐng)前往  登錄 或  注冊(cè)
SCHOLAT.com 學(xué)者網(wǎng)
免責(zé)聲明 | 關(guān)于我們 | 用戶反饋
聯(lián)系我們:
主站蜘蛛池模板: 清水河县| 延长县| 方山县| 灌云县| 高清| 宁强县| 新民市| 万荣县| 云霄县| 灵川县| 出国| 金湖县| 十堰市| 沙坪坝区| 彩票| 岢岚县| 彰化市| 太仓市| 诏安县| 安仁县| 治县。| 通城县| 汉寿县| 邛崃市| 沅江市| 杨浦区| 锡林郭勒盟| 祁东县| 广水市| 新民市| 贡嘎县| 巧家县| 郧西县| 阿拉善右旗| 宁强县| 松阳县| 宽甸| 峨眉山市| 台前县| 永年县| 邵武市|