69一区二三区好的精华液,中文字幕无码av波多野吉衣,亚洲精品久久久久久无码色欲四季,日本不卡高字幕在线2019

CFP: Representation Learning in Radiology
來(lái)源: 余紹德/
中國(guó)傳媒大學(xué)
1715
2
0
2021-01-01

在BioMed Research International(SCI期刊,影響因子2.2)上,我們發(fā)起了Representation Learning in Radiology的special issue.截稿日期是2020年11月13號(hào).主題含括表達(dá)學(xué)習(xí)在圖像分析,影像組學(xué),多模態(tài)融合,特征工程,疾病診斷及藥物研發(fā),治療預(yù)后等相關(guān)工作.歡迎大家傳播和投稿,感謝支持. 


https://www.hindawi.com/journals/bmri/si/927263/


The development, deployment, and evolution of representation learning has been used in radiology for intelligent diagnosis, treatment outcome prediction, and biomarker discovery. Representation learning explores how to transform data into quantitative features and to facilitate automatic data analysis.

At present, radiomics and deep learning are still in development, and challenges still exist – e.g., how to automatically extract features with clinical meanings, how to train a deep network with a small number of data samples, how to fuse multi-source information, and how to design representation learning with high interpretability.

This Special Issue calls for submissions of original research and review articles to address these challenges and to highlight the recent progress of representation learning in radiology and related fields. We are particularly interested in articles that could deepen our understanding of representation learning in clinical applications with high interpretability. In addition, articles to uncover clinical and technical challenges are also welcomed.

Potential topics include but are not limited to the following:

  • Biomedical data representation and automatic data analysis

  • Recent progress in radiomics, delta radiomics and deep learning

  • Advanced technologies in multi-source information fusion

  • Feature engineering in computer-aided detection and diagnosis

  • Representation learning for disease diagnosis and biomarker discovery

  • Data representation in the prediction of treatment outcome

  • Integrated studies of representation learning and clinical applications



登錄用戶可以查看和發(fā)表評(píng)論, 請(qǐng)前往  登錄 或  注冊(cè)
SCHOLAT.com 學(xué)者網(wǎng)
免責(zé)聲明 | 關(guān)于我們 | 聯(lián)系我們
聯(lián)系我們:
主站蜘蛛池模板: 文成县| 阳江市| SHOW| 云安县| 保亭| 西安市| 仪征市| 谷城县| 惠水县| 墨玉县| 乌恰县| 东丽区| 昌平区| 木兰县| 嵊州市| 泰安市| 南乐县| 托克逊县| 安达市| 临湘市| 儋州市| 临高县| 新郑市| 全南县| 福建省| 太湖县| 建昌县| 长海县| 拉萨市| 安顺市| 东方市| 延寿县| 武定县| 宣汉县| 临沂市| 肃南| 大理市| 忻州市| 昭通市| 奉新县| 秦皇岛市|