69一区二三区好的精华液,中文字幕无码av波多野吉衣,亚洲精品久久久久久无码色欲四季,日本不卡高字幕在线2019

CFP: The Sixth International Conference on Data Analytics,DATA ANALYTICS 2017
來源: 甘文生/
暨南大學
1638
4
0
2017-07-01

The Sixth International Conference on Data Analytics,DATA ANALYTICS 2017 

   November 12 - 16, 2017 - Barcelona, Spain


     I am the TPC (Technical Program Committee) of the Sixth International Conference on Data Analytics (DATA ANALYTICS 2017, http://www.iaria.org/conferences2017/DATAANALYTICS17.html),  one of the two TPC come from the Mainland of China. We would greatly appreciate you can submit your original papers to the DATA ANALYTICS 2017, and attend this conference to share your research work. Details are as follows.


=====  details ========  

DATA ANALYTICS 2017 Tracks (topics and submission details: see CFP on the site)


Submission (full paper):           July 17, 2017

Notification:                               August 25, 2017

Registration:                              September 10, 2017

Camera ready:                          September 30, 2017


ISSN: 2308-4464
ISBN: 978-1-61208-603-3

Published by: IARIA XPS Press

Archived in the free access: ThinkMindTM Digital Library

Prints available at: Curran Associates, Inc.

Authors of selected papers will be invited to submit extended versions to a IARIA Journal

Articles will be submitted to appropriate indexes. 

Conference contact: mp@iaria.org


All tracks/topics are open to both research and industry contributions.

Special tracks:

PDA: Predictive Data Analytics
Chair and Coordinator: Prof. Dr. Sandjai Bhulai, Vrije Universiteit Amsterdam, the Netherlands s.bhulai@vu.nl

 

Tracks:

Fundamentals for data analytics
Tools, frameworks and mechanisms for data analytics; Open API for data analytics; In-database analytics; Pre-built analytics (pattern, time-series, clustering, graph, statistical analysis, etc.); Analytics visualization; Multi-modal support for data analytics; Google/FaceBook/Twitter/etc. analytics; High-performance data analytics


Mechanisms and features 
Scalable data analytics; Big data analytics; Deep data analytics; Mass data analytics; Storing, dropping and filtering data; Relevant/redundant/obsolete data analytics; Volume vs. semantics analytics; Nomad analytics; Predictive analytics; Trust in data analytics; Legal issues analytics; Failure on data analytics


Sentiment/opinion analysis
Architectures for generic sentiment analysis systems; Sentiment analysis techniques on social media; Document-level analysis; Sentence-level analysis; Aspect-based analysis; Comparative-sentiment analysis; Sentiment lexicon acquisition; Optimizing sentiment analysis algorithms; Applications of sentiment analysis.


Application-oriented analytics
Statistical applications; Simulation applications; Crawling web services; Cross-database analytics; Forecast analytics; Financial risk management; ROI analytics


Target analytics
Business analytics; Malware analytics; Cyber-threats analytics; Mining user logs; Reputation analytics; User choice analytics; Branding analytics; Utility proximity-search analytics; Survey-based online asset analytics; Online employment analytics; Geology analytics; Global climate analytics; Remote learning analytics; Homecare analytics; Population growth and migration analytics; Food-borne illness outbreaks analytics


Big Data
Foundational models for Big Data; Big Data Analytics and Metrics; Big Data processing and management; Big Data search and mining; Big Data platforms; Big Data persistence and preservation; Big Data and social networks; Big Data economics


Huge data
Knowledge Discovery from Huge Data; Computational Intelligence for Huge Data; Linked Huge Data; Security Intelligence with Huge Data



登錄用戶可以查看和發表評論, 請前往  登錄 或  注冊
SCHOLAT.com 學者網
免責聲明 | 關于我們 | 聯系我們
聯系我們:
主站蜘蛛池模板: 镇江市| 涟源市| 仙桃市| 定安县| 合阳县| 朝阳市| 龙门县| 蒲城县| 依兰县| 常山县| 淮安市| 大丰市| 塘沽区| 方山县| 玉山县| 金溪县| 南靖县| 长兴县| 大石桥市| 邢台县| 永和县| 莱阳市| 武邑县| 五家渠市| 台州市| 拉萨市| 泗阳县| 高唐县| 光山县| 临高县| 岗巴县| 长沙市| 高陵县| 榆社县| 友谊县| 探索| 拜泉县| 栖霞市| 沾益县| 康乐县| 舒城县|